Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38393642

ABSTRACT

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Subject(s)
Antineoplastic Agents , Podophyllotoxin , Mice , Animals , Humans , Female , Podophyllotoxin/pharmacology , Podophyllotoxin/chemistry , Tubulin/metabolism , Tubulin/pharmacology , Molecular Docking Simulation , Mice, Nude , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry
2.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349045

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Subject(s)
Chalcones , Sirtuin 2 , Triple Negative Breast Neoplasms , Humans , Sirtuin 2/pharmacology , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tubulin/pharmacology , Tubulin/therapeutic use , Cell Proliferation , Apoptosis
3.
Plant Physiol Biochem ; 207: 108361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237423

ABSTRACT

Like other heavy metals, Cr (VI) is a powerful carcinogen and mutagen agent. Its toxic effects on plants are well considered. In order to elucidate its adverse effects, the present work aims to study the mitosis aberrations of Cr (VI) on the Vicia faba root-cells and its molecular docking analysis to understand the genotoxicity mechanisms. In-vivo, Vicia faba plants were exposed to 50 and 100 µM Cr (VI) for 48 h. In-silico, molecular docking and molecular dynamics simulation were used to study the interactions between dichromate and tubulin tyrosine ligase T2R-TTL (PDBID: 5XIW) with reference to Colchicine (microtubule inhibitor). According to our results, Cr (VI) affects growth and cell division and also induces many mitosis aberrations such as chromosome sticking, anaphase/telophase bridges, lagging chromosomes and fragmentation during all phases of mitosis. On the one hand, Cr (VI) reduces mitotic index and promotes micronuclei induction. The in-silico results showed that dichromate establishes very strong bonds at the binding site of the tubulin tyrosine ligase T2R-TTL, with a binding affinity of -5.17 Kcal/Mol and an inhibition constant of 163.59 µM. These interactions are similar to those of colchicine with this protein, so dichromate could be a very potent inhibitor of this protein's activity. TTL plays a fundamental role in the tyrosination/detyrosination of tubulin, which is crucial to the regulation of the microtubule cytoskeleton. Its inhibition leads to the appearance of many morphogenic abnormalities such as mitosis aberrations. In conclusion, our data confirm the highest genotoxicity effects of Cr (VI) on Vicia faba root-cells.


Subject(s)
Fabaceae , Vicia faba , Vicia faba/genetics , Molecular Docking Simulation , Tubulin/genetics , Tubulin/pharmacology , Chromium/toxicity , Mitosis , DNA Damage , Colchicine/pharmacology , Tyrosine , Ligases , Chromosome Aberrations
4.
Bioorg Chem ; 143: 107056, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183685

ABSTRACT

Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.


Subject(s)
Antineoplastic Agents , Chalcones , Colonic Neoplasms , Prodrugs , Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Camptothecin/pharmacology , Cell Line, Tumor , Chalcones/pharmacology , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glutathione , Paclitaxel/pharmacology , Prodrugs/pharmacology , Tubulin/pharmacology , Autophagy/drug effects
5.
Hepatobiliary Pancreat Dis Int ; 23(2): 195-209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37806848

ABSTRACT

BACKGROUND: As reported, γ-tubulin (TuBG1) is related to the occurrence and development of various types of malignant tumors. However, its role in hepatocellular cancer (HCC) is not clear. The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients. METHODS: The correlation between TuBG1 and clinical parameters and survival in HCC patients was explored by bioinformatics analysis. Immunohistochemistry was used for the verification. The molecular function of TuBG1 was measured using colony formation, scratch assay, trans-well assay and flow cytometry. Gene set enrichment analysis (GSEA) was used to pick up the enriched pathways, followed by investigating the target pathways using Western blotting. The tumor-immune system interactions and drug bank database (TISIDB) was used to evaluate TuBG1 and immunity. Based on the TuBG1-related immune genes, a prognostic model was constructed and was further validated internally and externally. RESULTS: The bioinformatic analysis found high expressed TuBG1 in HCC tissue, which was confirmed using immunohistochemistry and Western blotting. After silencing the TuBG1 in HCC cell lines, more G1 arrested cells were found, cell proliferation and invasion were inhibited, and apoptosis was promoted. Furthermore, the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3 (ATR), phospho-P38 mitogen-activated protein kinase (P-P38MAPK), phospho-P53 (P-P53), B-cell lymphoma-2 associated X protein (Bax), cleaved caspase 3 and P21; decreased the expressions of B-cell lymphoma-2 (Bcl-2), cyclin D1, cyclin E2, cyclin-dependent kinase 2 (CDK2) and CDK4. The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively correlated with the overall survival. The constructed immune prognosis model could effectively evaluate the prognosis. CONCLUSIONS: The increased expression of TuBG1 in HCC is associated with poor prognosis, which might be involved in the occurrence and development of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Tubulin/genetics , Tubulin/metabolism , Tubulin/pharmacology , Apoptosis , Cell Proliferation , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Gene Expression Regulation, Neoplastic , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/pharmacology
6.
Acta Trop ; 248: 107026, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722447

ABSTRACT

Giardia lamblia is a globally distributed protozoan parasite that causes intestinal disease. Recently, there is an increase in refractory cases of giardiasis to chemotherapeutic agents, and drugs available cause side effects that may limit its use or cause therapeutic non-compliance. Therefore, search for alternative and less harmful drugs to treat giardiasis is an important task. In this sense, resveratrol (RSV) is a polyphenol with a wide range of pharmacological effects such as antimicrobial, anticarcinogenic and antioxidant. The aim of this study was to evaluate the effects of RSV on Giardia lamblia trophozoites in vitro and in silico, focusing on tubulin affectation, a major protein of the Giardia cytoskeleton which participates in relevant processes for cell survival. In vitro determinations showed that RSV inhibits parasite growth and adherence, causes morphological changes, and induces apoptosis-like cell death through tubulin alterations demonstrated by immunolocalization and Western blot assays. Bioinformatic analysis by molecular docking suggested that RSV binds to Giardia tubulin interface heterodimer, sharing binding residues to those reported with depolymerization inhibitors. These findings suggest that RSV affects microtubular dynamics and make it an interesting compound to study for its safety and antigiardiasic potential.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardiasis/drug therapy , Giardiasis/parasitology , Tubulin/metabolism , Tubulin/pharmacology , Tubulin/therapeutic use , Resveratrol/pharmacology , Trophozoites , Molecular Docking Simulation
7.
Environ Sci Pollut Res Int ; 30(38): 89859-89876, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37460886

ABSTRACT

Hearing loss induced by noise and combinations of factors is a common occupational disease among workers. This study aimed to investigate the impact of acute exposure to white noise and Al2O3 NPs, alone and in combination, on changes in the hearing and structural functions of the cochlea in rats. Thirty-six rats were randomly assigned to one of six groups: Control, acute exposure to white noise, exposure to γ-Al2O3 NPs, exposure to noise plus γ-Al2O3 NPs, exposure to α-Al2O3 NPs, and exposure to the combination of noise plus α-Al2O3 NPs. TTS and PTS were examined using DPOAE, while oxidative index (MDA, GSH-Px), gene expression (NOX3, TGF-ß, CYP1A1), protein expression (ß-Tubulin, Myosin VII), and histopathological changes were examined in the cochlea. The morphology of Al2O3 NPs was examined by TEM. The results of the DPOAE test showed a significant increase in TTS in all groups and an increase in PTS in the groups exposed to noise, γ-Al2O3 NPs, and a combination of noise plus Al2O3 NPs (P < 0.05). In the group exposed to white noise plus Al2O3 NPs, the MDA levels increased, the level of GSH-Px decreased, and the expression percentage of ß-Tubulin and Myosin VII decreased, while the expression of NOX3, TGF-ß, and CYP1A1 (except for the α-Al2O3 NPs group) significantly increased (P < 0.05). Histopathological changes of the cochlea indicated damage to hair and ganglion cells, which was more severe in the combined exposure group. The combined and independent exposure to white noise and Al2O3 NPs damaged hair and ganglion cells for high-frequency perception, affecting the function and structure of the cochlea and leading to TTS and PTS.


Subject(s)
Hearing Loss, Noise-Induced , Rats , Animals , Hearing Loss, Noise-Induced/genetics , Rats, Wistar , Tubulin/metabolism , Tubulin/pharmacology , Cytochrome P-450 CYP1A1/metabolism , Auditory Threshold , Cochlea/metabolism , Cochlea/pathology
8.
Nephron ; 147(11): 693-700, 2023.
Article in English | MEDLINE | ID: mdl-37263257

ABSTRACT

INTRODUCTION: Low-grade inflammation is seen in many chronic illnesses, including chronic kidney disease (CKD). We have recently reported on beneficiary effects of anti-inflammatory treatment in the interleukin (IL-) 1 pathway on anemia as well as CKD extent in a mouse model. Colchicine has been shown to have beneficiary effects in several inflammatory conditions through various mechanisms, including inhibition of tubulin polymerization as well as caspase-1-mediated IL-1 activation. METHODS: Kidney injury (KI) was induced by administering an adenine diet to 8-week-old C57BL/6J mice treated with colchicine (Col) (30 µg/kg) or saline injections for 3 weeks, generating 4 groups: C, Ccol, KI, and KIcol. RESULTS: KI animals had an increase in inflammation indices in the blood (neutrophils), liver, and kidneys (uromodulin, IL-6, pSTAT3). Increased kidney tubulin polymerization and caspase-1 in KI, as well as kidney Mid88 and IRAK4 (downstream of IL-1), were inhibited in KIcol. Kidney macrophage and polymorphonuclear infiltration (positive for F4/80 and MPO, respectively), the percentage of fibrotic area, and TGFß mRNA levels were lower in KIcol versus KI. CONCLUSIONS: Colchicine inhibited tubulin polymerization and caspase-1 activation and attenuated kidney inflammation and fibrosis in a mouse model of adenine-induced KI. Given its reported safety profile for long-term anti-inflammatory therapy without increasing infection tendency, it may serve as novel therapeutic approach in CKD.


Subject(s)
Colchicine , Renal Insufficiency, Chronic , Mice , Animals , Colchicine/therapeutic use , Colchicine/metabolism , Colchicine/pharmacology , Tubulin/metabolism , Tubulin/pharmacology , Tubulin/therapeutic use , Mice, Inbred C57BL , Kidney/pathology , Renal Insufficiency, Chronic/metabolism , Inflammation/drug therapy , Inflammation/pathology , Anti-Inflammatory Agents/therapeutic use , Caspase 1/metabolism , Fibrosis , Adenine/metabolism , Adenine/pharmacology , Adenine/therapeutic use , Interleukin-1/metabolism , Interleukin-1/pharmacology , Interleukin-1/therapeutic use , Disease Models, Animal
9.
Hum Reprod Update ; 29(4): 369-394, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36977357

ABSTRACT

BACKGROUND: Total fertilization failure (TFF) is the failure of all metaphase II oocytes to fertilize in ART cycles. The phenomenon represents a known cause of infertility, affecting 1-3% of ICSI cycles. Oocyte activation deficiency (OAD) is the leading cause of fertilization failure, attributed to sperm- or oocyte-related issues, although until recently little attention has been given to oocyte-related deficiencies. Different strategies for overcoming TFF have been proposed in clinical settings, mainly using artificial oocyte activation (AOA) by calcium ionophores. Typically, AOA has been blindly applied with no previous diagnosis testing and, therefore, not considering the origin of the deficiency. The scarcity of data available and the heterogeneous population subjected to AOA make it challenging to draw firm conclusions about the efficacy and safety of AOA treatments. OBJECTIVE AND RATIONALE: TFF leads to an unexpected, premature termination of ART, which inflicts a substantial psychological and financial burden on patients. This review aims to provide a substantial update on: the pathophysiology of fertilization failure, focusing both on sperm- and oocyte-related factors; the relevance of diagnostic testing to determine the cause of OAD; and the effectiveness and safety of AOA treatments to overcome fertilization failure. SEARCH METHODS: Relevant studies were identified in the English-language literature using PubMed search terms, including fertilization failure, AOA, phospholipase C zeta (PLCζ), PLCZ1 mutations, oocyte-related factors, wee1-like protein kinase 2 (WEE2) mutations, PAT1 homolog 2 (PATL2) mutations, tubulin beta-8 chain (TUBB8) mutations, and transducin-like enhancer protein 6 (TLE6) mutations. All relevant publications until November 2022 were critically evaluated and discussed. OUTCOMES: Fertilization failure after ART has been predominantly associated with PLCζ deficiencies in sperm. The reason relates to the well-established inability of defective PLCζ to trigger the characteristic pattern of intracellular Ca2+ oscillations responsible for activating specific molecular pathways in the oocyte that lead to meiosis resumption and completion. However, oocyte deficiencies have recently emerged to play critical roles in fertilization failure. Specifically, mutations have been identified in genes such as WEE2, PATL2, TUBB8, and TLE6. Such mutations translate into altered protein synthesis that results in defective transduction of the physiological Ca2+ signal needed for maturation-promoting factor (MPF) inactivation, which is indispensable for oocyte activation. The effectiveness of AOA treatments is closely related to identifying the causal factor of fertilization failure. Various diagnostic tests have been developed to determine the cause of OAD, including heterologous and homologous tests, particle image velocimetry, immunostaining, and genetic tests. On this basis, it has been shown that conventional AOA strategies, based on inducing the calcium oscillations, are highly effective in overcoming fertilization failure caused by PLCζ-sperm deficiencies. In contrast, oocyte-related deficiencies might be successfully managed using alternative AOA promoters that induce MPF inactivation and meiosis resumption. Such agents include cycloheximide, N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN), roscovitine, and WEE2 complementary RNA. In addition, when OAD is caused by oocyte dysmaturity, applying a modified ovarian stimulation protocol and trigger could improve fertilization. WIDER IMPLICATIONS: AOA treatments represent a promising therapy to overcome fertilization failure caused by sperm- and oocyte-related factors. Diagnosing the cause of fertilization failure will be essential to improve the effectiveness and safe utilization of AOA treatments. Even though most data have not shown adverse effects of AOA on pre- and post-implantation embryo development, the literature is scarce on the matter concerned and recent studies, mainly using mice, suggest that AOA might cause epigenetic alterations in the resulting embryos and offspring. Until more robust data are available, and despite the encouraging results obtained, AOA should be applied clinically judiciously and only after appropriate patient counseling. Currently, AOA should be considered an innovative treatment, not an established one.


Subject(s)
Fertilization , Oocytes , Pregnancy Rate , Semen , Sperm Injections, Intracytoplasmic , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium/pharmacology , Oocytes/physiology , Semen/physiology , Sperm Injections, Intracytoplasmic/methods , Spermatozoa/metabolism , Tubulin/pharmacology
10.
Phys Biol ; 20(3)2023 04 03.
Article in English | MEDLINE | ID: mdl-36893471

ABSTRACT

Microtubule (MT) severing enzymes Katanin and Spastin cut the MT into smaller fragments and are being studied extensively usingin-vitroexperiments due to their crucial role in different cancers and neurodevelopmental disorders. It has been reported that the severing enzymes are either involved in increasing or decreasing the tubulin mass. Currently, there are a few analytical and computational models for MT amplification and severing. However, these models do not capture the action of MT severing explicitly, as these are based on partial differential equations in one dimension. On the other hand, a few discrete lattice-based models were used earlier to understand the activity of severing enzymes only on stabilized MTs. Hence, in this study, discrete lattice-based Monte Carlo models that included MT dynamics and severing enzyme activity have been developed to understand the effect of severing enzymes on tubulin mass, MT number, and MT length. It was found that the action of severing enzyme reduces average MT length while increasing their number; however, the total tubulin mass can decrease or increase depending on the concentration of GMPCPP (Guanylyl-(α,ß)-methylene-diphosphonate)-which is a slowly hydrolyzable analogue of GTP (Guanosine triphosphate). Further, relative tubulin mass also depends on the detachment ratio of GTP/GMPCPP and Guanosine diphosphate tubulin dimers and the binding energies of tubulin dimers covered by the severing enzyme.


Subject(s)
Microtubules , Tubulin , Tubulin/metabolism , Tubulin/pharmacology , Computer Simulation , Microtubules/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/pharmacology
11.
Assay Drug Dev Technol ; 21(1): 17-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36594970

ABSTRACT

The severity and prevalence of cancer in modern time are a huge global health burden. Continuous efforts are being made toward the development of newer therapeutic candidates to treat and manage this ailment. The dihydropyrimidinone scaffold is one of the key nuclei that have been highly explored and investigated against cancer. It has the potential to combat the consequences of cancer by interacting with several biological targets. Tubulin polymerization inhibition is one such strategy to prevent the progression of cancer. In the presented work, we have synthesized a series of sixteen dihydropyrimidinone derivatives by following a rational drug design. The synthesized compounds have been characterized by 1H NMR and 13C NMR and were further evaluated for cytotoxic activity against breast cancer cell lines (MCF-7 and MDA-MB-231), lung cancer cell lines (A549), and colon cancer cell lines (HCT-116). Compounds 5D and 5P were found most potent and revealed a better cytotoxic activity compared with the standard drug colchicine. Furthermore, the tubulin polymerization inhibition assay revealed that compound 5D showed better inhibition than colchicines, whereas compound 5P revealed an almost equal inhibition to that of colchicine. Furthermore, to investigate the possible mode of action and binding patterns, compounds 5P and 5D were subjected to molecular docking against tubulin (Protein Data Bank ID: ISA0). The results showed that compounds revealed significant interactions and were well occupied inside the cavity of tubulin. The compounds 5D and 5P may serve as new leads in drug development against cancer.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Humans , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Structure-Activity Relationship , Cell Proliferation , Tubulin/chemistry , Tubulin/metabolism , Tubulin/pharmacology , Molecular Docking Simulation , Colchicine/metabolism , Colchicine/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Structure , Cell Line, Tumor
12.
J Mol Histol ; 54(1): 67-75, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36719565

ABSTRACT

Extracellular matrix (ECM) production and nucleus pulposus (NP) cell migration increase under periodic mechanical stress (PMS), but the underpinning regulatory mechanism remains unclear. This work aimed to examine the regulatory effects of cytoskeleton-lipid raft-integrin α1 signaling in NP cells exposed to PMS. Briefly, In NP cells, cytoskeleton rearrangement, lipid raft aggregation and integrin α1 expression in the stress and control groups were assessed by immunofluorescent staining and immunoblot. In addition, cell migration and ECM gene expression were detected by a scratch test and quantitative reverse transcription polymerase chain reaction (qRT­PCR), respectively. As a result, PMS up-regulated ECM gene expression and enhanced NP cell migration (both P < 0.05), accompanied by increased integrin α1, lipid raft, caveolin-3, F-actin and ß-tubulin amounts. Pretreatment with the lipid raft inhibitor methyl-ß-cyclodextrin (MßCD) or small interfering RNA (siRNA) targeting caveolin-3 resulted in decreased ECM mRNA synthesis and cell migration induced by PMS (both P < 0.05); meanwhile, integrin α1 expression was also reduced. F-actin and ß-tubulin inhibition by cytochalasin D and colchicine, respectively, not only reduced ECM mRNA synthesis and cell migration (both P < 0.05), but also disrupted lipid raft and caveolin-3 amount increases induced by PMS in NP cells. In conclusion, PMS promotes ECM mRNA up-regulation and cell migration through the cytoskeleton-lipid raft-integrin α1 signaling pathway, inhibiting cytoskeleton and lipid rafts could block the cellular effects.


Subject(s)
Actins , Nucleus Pulposus , Rats , Animals , Actins/metabolism , Integrin alpha1/metabolism , Tubulin/metabolism , Tubulin/pharmacology , Stress, Mechanical , Nucleus Pulposus/metabolism , Caveolin 3/metabolism , Cytoskeleton/metabolism , Membrane Microdomains/metabolism , RNA, Small Interfering/metabolism , RNA, Messenger/metabolism
13.
Environ Toxicol ; 38(3): 591-603, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36370150

ABSTRACT

OBJECTIVE: Environmental contaminants such as cadmium (Cd) may have a deleterious impact on sperm and reduce male fertility by compromising the blood-testis barrier (BTB). Hence, the effects of the traditional Chinese medicine Qiangjing tablet (QJP) on sperm quality and BTB alterations induced by Cd in mouse testes were examined. METHODS: Adult KM mice challenged with Cd chloride were examined, QJP was administered to mice as an oral drug by gavage, and the experiments lasted 2 weeks. Testicular and epididymal weights, sperm quality, anti-sperm antibodies (AsAb), hormone levels, and histology were evaluated. Changes in the levels of N-cadherin, occludin, ZO-1, claudin-11, F-actin, and ß-tubulin and their mRNAs were evaluated. The effects of QJP on the PI3K/Akt/Rictor pathway were evaluated. RESULTS: CdCl2 decreased reproductive organ weight, sperm quality, and testosterone (T) levels; increased AsAb, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; induced structural damage in testicles with BTB disruption; increased BTB permeability; and decreased N-cadherin, occludin, ZO-1, claudin-11, F-actin, and ß-tubulin expression. After treatment, QJP blocked the effects of Cd on reproductive organ weight, sperm quality, and T; mitigated germinal epithelium compartment alterations; decreased AsAb, FSH, and LH levels; and preserved BTB ultrastructure and function. In addition, QJP induced increases in N-cadherin, occludin, ZO-1, claudin-11, F-actin, and ß-tubulin levels and the expression of their mRNAs through the PI3K/Akt/Rictor pathway. After the application of JRAB2011, the levels of a specific mTORC2 suppressor, Rictor, and the BTB-protective effect of QJP were greatly reduced. CONCLUSIONS: We demonstrated the effect of QJP against Cd-induced damage to the BTB, and the results indicate that QJP may play a significant role in opposing the effects of Cd through the PI3K/Akt/Rictor pathway.


Subject(s)
Blood-Testis Barrier , Phosphatidylinositol 3-Kinases , Mice , Male , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cadmium/metabolism , Actins/metabolism , Tubulin/metabolism , Tubulin/pharmacology , Occludin/metabolism , Medicine, Chinese Traditional , Testis , Signal Transduction , Transcription Factors/metabolism , Cadherins/metabolism , Follicle Stimulating Hormone/metabolism , Claudins/metabolism , Spermatogenesis
14.
Mol Inform ; 42(1): e2200166, 2023 01.
Article in English | MEDLINE | ID: mdl-36175374

ABSTRACT

Modification of the tubulin-microtubule (Tub-Mts) system has generated effective strategies for developing different treatments for cancer. A huge amount of clinical data about inhibitors of the tubulin-microtubule system have supported and validated the studies on this pharmacological target. However, many tubulin-microtubule inhibitors have been developed from representative and common scaffolds that cover a small region of the chemical space with limited structural innovation. The main goal of this study is to develop the first consensus virtual screening protocol for natural products (ligand- and structure-based drug design methods) tuned for the identification of new potential inhibitors of the Tub-Mts system. A combined strategy that involves molecular similarity, molecular docking, pharmacophore modeling, and in silico ADMET prediction has been employed to prioritize the selections of potential inhibitors of the Tub-Mts system. Five compounds were selected and further studied using molecular dynamics and binding energy predictions to characterize their possible binding mechanisms. Their structures correspond to 5-[2-(4-hydroxy-3-methoxyphenyl) ethyl]-2,3-dimethoxyphenol (1), 9,10-dihydro-3,4-dimethoxy-2,7-phenanthrenediol (2), 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one (3), 13,14-epoxyparvifoline-4',5',6'-trimethoxybenzoate (4), and phenylmethyl 6-hydroxy-2,3-dimethoxybenzoate (5). Compounds 1-3 have been associated with literature reports that confirm their activity against several cancer cell lines, thus supporting the utility of this protocol.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Colchicine/pharmacology , Colchicine/chemistry , Colchicine/metabolism , Tubulin/metabolism , Tubulin/pharmacology , Molecular Docking Simulation , Consensus , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Binding Sites , Microtubules/metabolism
15.
J Immunol Res ; 2022: 9329494, 2022.
Article in English | MEDLINE | ID: mdl-36132985

ABSTRACT

Electroacupuncture (EA) could enhance neuroregeneration and posttraumatic conditions; however, the underlying regulatory mechanisms remain ambiguous. PDCD6 (programmed cell death 6) is an established proapoptotic regulator which is responsible for motoneuronal death. However, its potential regulatory role in post-spinal cord injury (SCI) regeneration has remained largely unknown. Further investigations are warranted to clarify the involvement of PDCD6 post-SCI recovery and the underlying mechanisms. In our study, based on bioinformatics prediction, we found that miR-34a-3p might be an upstream regulator miRNA for PDCD6, which was subsequently validated through combined utilization of the qRT-PCR, western blot, and dual-luciferase reporter system. Our in vitro results showed that miR-34a-3p might promote the in vitro differentiation of neural stem cell (NSC) through suppressing PDCD6 and regulating other important neural markers such as fibroblast growth factor receptor 1 (FGFR1), MAP1/2 (MAP kinase kinases 1/2), myelin basic protein (MBP), ßIII-tubulin Class III ß-tubulin (ßIII tubulin), and glial fibrillary acidic protein (GFAP). Notably, in the post-SCI rat model, exogenous miR-34a-3p agomir obviously inhibited the expression of PDCD6 at the protein level and promoted neuronal proliferation, motoneurons regeneration, and axonal myelination. The restorations at cellular level might contribute to the improved hindlimbs functions of post-SCI rats, which was manifested by the Basso-Beattie-Bresnahan (BBB) locomotor test. The impact of miR-34a-3p was further promoted by EA treatment in vivo. Conclusively, this paper argues that a miR-34a-3p/PDCD6 axis might be a candidate therapeutic target for treating SCI and that the therapeutic effect of EA is driven through this pathway.


Subject(s)
Electroacupuncture , MicroRNAs , Spinal Cord Injuries , Animals , Glial Fibrillary Acidic Protein/pharmacology , MicroRNAs/genetics , Mitogen-Activated Protein Kinase Kinases/pharmacology , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Myelin Basic Protein , Rats , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/therapeutic use , Recovery of Function/genetics , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Tubulin/pharmacology
16.
Ecotoxicol Environ Saf ; 244: 114044, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36055044

ABSTRACT

Decabromodiphenyl ethane (DBDPE), a widely used novel brominated flame retardant, is gaining concerns due to rapidly increased contents in various environmental and biota samples. In the present study, zebrafish (Danio rerio) embryos were exposed to 2.91, 9.71, 29.14 and 97.12 µg/L of DBDPE until 120 h post-fertilization (hpf) to investigate the potential developmental neurotoxicity and underlying mechanisms. Chemical analysis revealed concentration-dependently increased body burdens of DBDPE in zebrafish larvae, with bioaccumulation factors (BCFs) ranging from 414 to 726. Embryonic exposure to DBDPE caused hyperactivity without affecting the development of secondary motoneuron axons and muscle fibers. However, further results implicated that DBDPE may affect the locomotor regulatory network via different mechanisms at lower and higher concentrations. On the one hand, embryonic exposure to 2.91 µg/L DBDPE transiently promoted spontaneous coiling contractions, but showed no effects on touch-response and swimming activity in zebrafish larvae. The whole-body contents of neurotransmitters were significantly decreased. Significant decreased protein abundances of α1-TUBULIN and SYN2a and molecular docking results pointed out possible interactions of DBDPE with these two proteins. However, these changes may be unconcerned with the transient hyperactivity, and the exact molecular mechanisms need further investigation. On the other hand, 29.14 and 97.12 µg/L DBDPE exposure caused longer-lasting effects in promoting spontaneous coiling contractions, and also touch-response and swimming activity. At the same time, increased ACh contents (without changes of other neurotransmitters) and ChAT activity and inhibited transcription of nAChRs were observed at higher concentrations. Molecular docking indicated direct interaction of DBDPE with ChAT. The results suggested that DBDPE induced hyperactivity at higher concentrations was probably involved with disrupted cholinergic system, with ChAT as a potential target. Given that the body burden of DBDPE in lower concentration group was comparable with those detected in wild fish, the current results may provide useful information for ecological risk assessment.


Subject(s)
Flame Retardants , Zebrafish , Animals , Bromobenzenes , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology , Flame Retardants/metabolism , Flame Retardants/toxicity , Larva , Molecular Docking Simulation , Neurotransmitter Agents/metabolism , Tubulin/metabolism , Tubulin/pharmacology , Zebrafish/metabolism
17.
Cell Mol Biol (Noisy-le-grand) ; 68(4): 108-112, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35988274

ABSTRACT

In this study, the antitumor effects of tubulin-binding agent MPC-6827 on HeLa, MCF-7 and A549 cell lines originated from cervix carcinoma, metastatic breast adenocarcinoma and adenocarcinomic human alveolar basal epithelial cells respectively were determined. Cell index, BrdU labelling index, mitotic index and apoptotic index were evaluated in experiments. In cell index experiment 2 nM, 4 nM, 6 nM, 8 nM, 10 nM MPC-6827 applied to three cell lines. These parameters showed that 4 nM was the optimum concentration for HeLa and A549 cells, while 2 nM was the optimum concentration for MCF-7 cells. The use of optimum concentrations for each cell line has shown that while there was a significant decrease in mitotic index, BrdU labelling index, there was a significant increase in apoptotic index.


Subject(s)
Antineoplastic Agents , Neoplasms , Quinazolines , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Bromodeoxyuridine/pharmacology , Cell Line, Tumor/drug effects , Cell Proliferation , Female , HeLa Cells , Humans , Neoplasms/drug therapy , Quinazolines/metabolism , Quinazolines/pharmacology , Tubulin/metabolism , Tubulin/pharmacology
18.
FEBS Open Bio ; 12(10): 1788-1796, 2022 10.
Article in English | MEDLINE | ID: mdl-35856166

ABSTRACT

Effective amelioration of type II diabetes requires therapies that increase both glucose uptake activity per cell and skeletal muscle mass. Myristic acid (14:0) increases diacylglycerol kinase (DGK) δ protein levels and enhances glucose uptake in myotubes in a DGKδ-dependent manner. However, it is still unclear whether myristic acid treatment affects skeletal muscle mass. In this study, we found that myristic acid treatment increased the protein level of ß-tubulin, which constitutes microtubules and is closely related to muscle mass, in C2C12 myotubes but not in the proliferation stage in C2C12 myoblasts. However, lauric (12:0), palmitic (16:0) and oleic (18:1) acids failed to affect DGKδ and ß-tubulin protein levels in C2C12 myotubes. Moreover, knockdown of DGKδ by siRNA significantly inhibited the increased protein level of ß-tubulin in the presence of myristic acid, suggesting that the increase in ß-tubulin protein by myristic acid depends on DGKδ. These results indicate that myristic acid selectively affects ß-tubulin protein levels in C2C12 myotubes via DGKδ, suggesting that this fatty acid improves skeletal muscle mass in addition to increasing glucose uptake activity per cell.


Subject(s)
Diabetes Mellitus, Type 2 , Diacylglycerol Kinase , Diabetes Mellitus, Type 2/metabolism , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Diacylglycerol Kinase/pharmacology , Glucose/metabolism , Humans , Muscle Fibers, Skeletal/metabolism , Myristic Acid/pharmacology , RNA, Small Interfering/pharmacology , Tubulin/pharmacology
19.
PeerJ ; 10: e13508, 2022.
Article in English | MEDLINE | ID: mdl-35651747

ABSTRACT

Background: Triple-negative breast cancer (TNBC) responds poorly to the available drugs; thus, the mortality rate associated with TNBC remains high. 7-α-Hydroxyfrullanolide (7HF) possesses anticancer properties and arrests cells in the G2/M-phase via modulation of several proteins involved in the G2/M-phase transition, as well as the mitotic checkpoint in MDA-MB-468 (TNBC) cells. Microtubules (MTs) dynamically regulate cell division in the G2/M phase and are related to cancer cell stress response. However, antimitotic drug cytotoxicity to multiple cancer resistance developed in response to drugs are obstacles faced to date. Here, the activity and mechanism via which 7HF controls MTs dynamics was investigated in MDA-MB-468 cells. Methods: 7HF uptake by MDA-MB-468 cells was assessed using spectrophotometry. The drug-like properties of 7HF were predicted using the Swiss-absorption, distribution, metabolism, and excretion (ADME) webtool. Then, the effect of 7HF treatment (6, 12, and 24 µM) on the dynamic arrangement of MTs was assessed for 1, 12, and 24 h using indirect immunofluorescence. Polymerization of α- and ß-tubulin was assessed using different 7HF concentrations in a cell-free system for 1 h. Cell proliferation assay with bromodeoxyuridine plus propidium iodide staining and flow cytometry was performed at different 7HF concentrations and time points. The mechanism of action was assessed by detecting the expression of proteins, including Bub3, cyclin B1, p-Cdk1 (Tyr15), Rb, p-Rb (Ser780), Chk1, p-Chk1 (Ser345), Chk2, p-Chk2 (Ser516), and p-H2AX (Ser139), using western blotting. Molecular docking was used to predict the molecular interactions between 7HF and tubulins in MTs. Results: We observed that 7HF was able to enter the MDA-MB-468 cells. The ADME webtool analysis predicted that it possesses the high passive permeation and gastrointestinal absorption properties of drugs. Various concentrations of 7HF disrupted the dynamic arrangement of spindle MTs by causing radial spindle array shrinkage and expansion of fibrous spindle density and radial array lengths in a time-dependent manner. 7HF reduced polymerization of α-, ß-tubulin in dose-dependent manner. 7HF also triggered DNA damage response by inducing G2/M and G1 phase arrests in a concentration and time-dependent manner, which occurred due to the upregulation of Bub3, Chk1, p-Chk1 (Ser345), p-Cdk1 (Tyr15), and cyclin B1. According to molecular docking analysis, 7HF preferred to bind to ß-tubulin over α-tubulin. The lactone, ketone, and hydroxyl groups of 7HF supported the 7HF-tubulin interactions. Hydrogen bonding with a hydrocarbon ring and salt bridge attractive forces were responsible for the binding versatility of 7HF. Conclusions: This is the first study to investigate the molecular mechanism, MTs interacting sites, and the internalization and drug-like properties of 7HF in TNBC cells. The findings will be useful for developing 7HF-based treatment for patients with TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cyclin B1/pharmacology , Cell Proliferation , Triple Negative Breast Neoplasms/drug therapy , Tubulin/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Microtubules
20.
J Clin Periodontol ; 49(6): 609-620, 2022 06.
Article in English | MEDLINE | ID: mdl-35373365

ABSTRACT

AIM: Once the periodontal ligament (PDL) is damaged, it is difficult to regenerate its characteristic structure. Copine7 (CPNE7) reportedly plays a functional role in supporting periodontal attachment and PDL alignment. Here we demonstrate the regulatory mechanism of CPNE7 coordination with cytoskeleton reorganization and cementum attachment protein (CAP)-mediated attachment in PDL regeneration. MATERIALS AND METHODS: The expression and localization of CPNE7, α-TUBULIN, ACTIN, and microtubule associated protein tau (TAU) were investigated in vitro. The effects of recombinant CPNE7 (rCPNE7) and CPNE7-derived peptides (CPNE7-DP) on the regulation of CAP were analysed in vitro, and PDL repair capacity was analysed in vivo. RESULTS: CPNE7 co-localized with F-ACTIN and induced α-TUBULIN expansion to the edge of human PDL cells (hPDLCs). ACTIN and α-TUBULIN protein expressions were not elevated in rCPNE7-treated hPDLCs. rCPNE7 elevated the protein expression of TAU, which co-localized with F-ACTIN and α-TUBULIN. Replantation studies on mice revealed that well-attached and well-aligned PDLs were repaired in the rCPNE7 group. CPNE7-DP directly up-regulate the expression of CAP in vitro and promote PDL regeneration in three-wall defect canine models in vivo. CONCLUSIONS: Our findings suggest that CPNE7 helps in PDL repair by supporting PDL alignment through TAU-mediated cytoskeleton reorganization and direct regulation of CAP-mediated PDL attachments of PDLCs.


Subject(s)
Dental Cementum , Periodontal Ligament , Actins , Animals , Cells, Cultured , Mice , Regeneration , Tubulin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...